01.

Information is quantized.

\begin{align}Et \geq \frac{\hbar}{2} \notag\end{align}
\begin{align}Et = \frac{\hbar}{2}(2n + 1) \notag\end{align}
\begin{align}I = \frac{E t}{\Delta E \Delta T} = \left(\frac{2}{\hbar}\right) Et = (2n+1) \geq 1 \text{ nat} = \log_2 (e)\text{ bits} \notag\end{align}
02.

2-slit

\begin{align}&n \text{ measurement locations on screen} \notag \\&I (\text{no measurement @ slit}) = h(\cos^2(x)) - h(\text{uniform}(x)) + \log(n)\notag \\&I (\text{measurement @ slit}) = \log(2) + \log(n) \notag \\&h (\text{uniform}(x)) - h(\cos^2(x)) =  \log(e/2) \notag \\&I (\text{measurement}) - I (\text{no measurement}) = \log(2) + \log(e/2) = 1 \notag\end{align}
03.

Split Gaussian wavefunction.

\begin{align}\Delta E \Delta t = \frac{\hbar}{2} \notag\end{align}
\begin{align}I = \left(\frac{2}{\hbar}\right) E t = 1 \notag\end{align}
\begin{align}h(p(x)) = -\int p(x) \log(p(x)) dx \notag\end{align}
\begin{align}I = h(p(f)) + h(p(t)) = \frac{1}{2} \log(8\pi e \Delta f^2) + \frac{1}{2}\log(2 \pi e \Delta t^2) = 1 \notag\end{align}
04.

Spin s Particle.

\begin{align}S_t = \frac{\hbar}{2} \left[\begin{array}{cc}1 & 0 \\0 & 1 \\\end{array} \right] \notag\end{align}
\begin{align}|S| = \sqrt{|S_x|^2 + |S_y|^2 + |S_z|^2 + |S_t|^2 } = \hbar\left(s + \frac{1}{2}\right)\notag\end{align}
\begin{align}I_{\text{spin}} = \frac{2|S|}{\hbar} = 2s + 1\notag\end{align}
05.

Qbit.

\begin{align}I_{S_x} = I_{S_y} = I_{S_z} = \int^\pi_0 \frac{1}{2} \sin (\theta) H_2 \left( \beta = \cos \left(\frac{\theta}{2}\right)^2 \right) d\theta = \frac{1}{2}\notag\end{align}
\begin{align}I_{S_t} = \int^{\delta t}_0 \frac{1}{\delta t} H_2 \left(\beta = \frac{t}{\delta t}\right) dt = \frac{1}{2}\notag\end{align}
\begin{align}I_{\text{spin}-\frac{1}{2}} = I_{S_x} + I_{S_y} + I_{S_z} + I_{S_t} = 2\notag\end{align}
06.

Degrees of Freedom.

\begin{align}&\text{Gabor's ``logon'' of information, that tile the time (T) - frequency (W) plane, is } \notag \\&2WT + 1 = 2n +1 \text{ degrees of freedom and is precisely } 2n +1\text{ natural units of entropy.}\notag\end{align}
07.

Black hole.

\begin{align}E = M c^2 = R_S c^4 / 2 G\notag\end{align}
\begin{align}t = 2 \pi R_S / c\notag\end{align}
\begin{align}I = \int \frac{2 E dt}{\hbar} = \int \frac{2 R_{sh} c^4 d (2 \pi R_{sh}/c)}{2 G \hbar} = \frac{\pi (R_{sh})^2 c^3}{G\hbar} = \frac{A c^3}{4 G \hbar}\notag\end{align}
Download Papers
Download Papers
Download Papers
Download Papers
Cookie consent
Cookies are used on this site to improve site navigation and provide the greatest user experience. By clicking ”Accept“, you consent to the use of the Cookies