01.

Newton’s law derivations

From Newton’s laws
[Newton’s 2nd law]
\begin{align}F_{\text{entropic}} + F_{\text{conservative}} = m a_{\text{particle}} \notag\end{align}
[Newton’s 3rd law]
\begin{align}m a_{\text{particle}} = F_{\text{particle}} = - F_{\text{vacuum}} = - ma\notag\end{align}
[Newton’s 1st law]
\begin{align}F_{\text{entropic}} + F_{\text{conservative}} + F_{\text{vacuum}} = 0 \notag\end{align}
Other formulas
[Euler - Lagrange]
\begin{align}F_{\text{vacuum}} = ma = \frac{d}{dt} (m v) = \nabla \left (\frac{mv^2}{2} \right ) \notag\end{align}
[Potential Energy]
\begin{align}F_{\text{conservative}} = - \nabla V(r) \notag\end{align}
[Entropic Force]
\begin{align}F_{\text{entropic}} = T\nabla S = k_B T \nabla \log(\Omega) \notag\end{align}
Combining ALL formulas
[All Formulas]
\begin{align}k_B T \nabla \log(\Omega) - \nabla V(r) + \nabla \left (\frac{m v^2}{2} \right ) = 0 \notag\end{align}
\begin{align}k_B T \cdot \log(\Omega) = V - \frac{m v^2}{2} + E_0 = E_0 - \mathcal{L} \notag\end{align}
\begin{align}\tau = \frac{\hbar}{2 k_B T} \notag\end{align}
\begin{align}\log (\Omega) = \left (\frac{2}{\hbar} \right ) (E_0 - \mathcal{L} ) \tau \notag\end{align}
02.

Path integral derivations

FORMULAS USED
[Canonical Distribution]
\begin{align}\log (\Omega ) = S / k_B = - E [\log (p) ] \notag\end{align}
[Concavity of Log]
\begin{align}\log (\Omega ) = - E [\log (p) ] = - \log (p)\notag\end{align}
[Rules of Qm]
\begin{align}p = \psi^* \psi \notag\end{align}
[Path Integral]
\begin{align}\psi = e^{-i\mathcal{H} d t/\hbar} \notag\end{align}
[Slow massive particle]
\begin{align}\mathcal{H} = m_0 c^2 + \frac{m v^2}{2} + V\notag\end{align}
[Minkowski transformation]
\begin{align}it \rightarrow \tau \notag\end{align}
[Langrangian]
\begin{align}\mathcal{L} = \frac{mv^2}{2} - V\notag\end{align}
Resulting formula
[Result]
\begin{align}S/k_B = \left (\frac{2}{\hbar}\right ) \int (mc^2 -\mathcal{L} ) d\tau \notag\end{align}
03.

Capstone derivation - information theory

\begin{align}dC = \frac{1}{2} \log \left ( 1 + \frac{S}{N} \right ) \notag\end{align}
\begin{align}S = (\Delta x)^2_{\text{Vaccum,} K=1} = \left ( 1 - \left (\frac{v}{c} \right )^2 \right ) 2 (\delta x)^2 \notag\end{align}
\begin{align}N = 2 D_\mu \tau = 2 \mu k_B T \tau = \frac{v\hbar}{F} \notag\end{align}
\begin{align}d I_M = 2 d C = \frac{2 \left ( 1- \left (\frac{v}{c} \right )^2 \right ) F c^2 (\delta t)^2}{v \hbar} \notag\end{align}
\begin{align}\frac{dI_M}{dt} = \frac{2Fc^2}{\frac{\hbar v}{dt}} - \frac{2 F v d t}{\hbar} \notag\end{align}
\begin{align}\frac{dI_M}{dt} = \frac{2}{\hbar} (mc^2 + V - V_0) \quad \quad \quad \quad 0 = \frac{2}{\hbar} (mc^2 - V_0) \notag\end{align}
\begin{align}H_2(\beta) = -\beta \log(\beta) - (1-\beta)\log(1-\beta) \notag\end{align}
\begin{align}H_2(\beta) = \log(2) - \frac{1}{2} \left(\frac{v}{c}\right)^2 \notag\end{align}
\begin{align}H_C (\beta) = H_2 (\beta) + \log\left(\frac{e}{2}\right) = 1-\frac{1}{2}\left(\frac{v}{c}\right)^2 \notag\end{align}
\begin{align}\frac{dH_C}{dt} = \frac{2}{\hbar} \left( mc^2 - \frac{m v^2}{2}\right) = \frac{2}{\hbar}(mc^2 - K) \notag\end{align}
\begin{align}-E[\log(p)] = H_C + I_M = \frac{2}{\hbar} \int (mc^2 - (K - V)) dt \notag\end{align}
\begin{align}\frac{S}{k_B} \equiv \log(\Omega) = -E[\log(p)] = \left(\frac{2}{\hbar}\right) \int (mc^2 - \mathcal{L}) dt \notag\end{align}
[Mutual Information]
\begin{align}dC = \frac{1}{2} \log \left ( 1 + \frac{S}{N} \right ) \notag\end{align}
\begin{align}S = (\Delta x)^2_{\text{Vaccum,} K=1} = \left ( 1 - \left (\frac{v}{c} \right )^2 \right ) 2 (\delta x)^2 \notag\end{align}
[Conditional Entropy]
\begin{align}H_2(\beta) = -\beta \log(\beta) - (1-\beta)\log(1-\beta) \notag\end{align}
\begin{align}H_2(\beta) = \log(2) - \frac{1}{2} \left(\frac{v}{c}\right)^2 \notag\end{align}
[Mutual Information]
\begin{align}N = 2 D_\mu \tau = 2 \mu k_B T \tau = \frac{v\hbar}{F} \notag\end{align}
\begin{align}d I_M = 2 d C = \frac{2 \left ( 1- \left (\frac{v}{c} \right )^2 \right ) F c^2 (\delta t)^2}{v \hbar} \notag\end{align}
\begin{align}\frac{dI_M}{dt} = \frac{2Fc^2}{\frac{\hbar v}{dt}} - \frac{2 F v d t}{\hbar} \notag\end{align}
\begin{align}\frac{dI_M}{dt} = \frac{2}{\hbar} (mc^2 + V - V_0) \quad \quad \quad \quad 0 = \frac{2}{\hbar} (mc^2 - V_0) \notag\end{align}
[Conditional Entropy]
\begin{align}H_C (\beta) = H_2 (\beta) + \log\left(\frac{e}{2}\right) = 1-\frac{1}{2}\left(\frac{v}{c}\right)^2 \notag\end{align}
\begin{align}\frac{dH_C}{dt} = \frac{2}{\hbar} \left( mc^2 - \frac{m v^2}{2}\right) = \frac{2}{\hbar}(mc^2 - K) \notag\end{align}
\begin{align}-E[\log(p)] = H_C + I_M = \frac{2}{\hbar} \int (mc^2 - (K - V)) dt \notag\end{align}
[Final Formula]
\begin{align}\frac{S}{k_B} \equiv \log(\Omega) = -E[\log(p)] = \left(\frac{2}{\hbar}\right) \int (mc^2 - \mathcal{L}) dt \notag\end{align}
Download Papers
Download Papers
Download Papers
Download Papers
Cookie consent
Cookies are used on this site to improve site navigation and provide the greatest user experience. By clicking ”Accept“, you consent to the use of the Cookies