Our Hypothesis

This states our predictions about what our research intends to find through scientific research methods.
01.

Particles move via the discrete Bernoulli Process.

  • The variance is dependent on velocity, but no reference frame has been defined.
  • We asked if it is possible to measure this reference time.
\begin{align}\overline{x(N)} = (2\beta -1)\delta x N \notag\end{align}
\begin{align}\overline{x(N)} = (2\beta -1)c t \notag\end{align}
\begin{align}(2 \beta -1) = v/c \ \ \ \ \text{ Mathematically nice } \beta \in [0,1] \ v \in [-c,c] \notag\end{align}
\begin{align}(\Delta x (N)_{\beta})^2 = 4 \beta (1 - \beta) (\delta x)^2 N \notag\end{align}
\begin{align}(\Delta x (N)_{v})^2 = \left (1 - \left ( \frac{v}{c} \right )^2 \right ) (\delta x)^2 N \notag\end{align}

The variance is dependent on velocity, but no reference frame has been defined

02.

Variance of proper time describes a Jitter term.

  • The conclusion is a new insight to special relativity in that the variance of the space-time location is minimized in the time dimension in a particular frame of reference.
\begin{align}(\Delta x (N)_{v})^2 = \left (1 - \left ( \frac{v}{c} \right )^2 \right ) (\delta x)^2 N \notag\end{align}
\begin{align}(\Delta p (N)_{v})^2 = \frac{\left (1 - \left ( \frac{v}{c} \right )^2 \right ) (m c)^2 }{N} \notag\end{align}
\begin{align}    (\Delta x)^{2} = (\Delta x(N)_{v})^{2} + \left(\frac{\Delta p(N)_{v}t}{m}\right)^{2} \notag\end{align}
\begin{align}(\Delta x)^2 = \left ( 1 - \left (\frac{v}{c} \right )^2 \right )\frac{\hbar t}{m} ( 1 + \cos (\theta_p - \theta_r)) \notag\end{align}
\begin{align}\text{Where, } \cos (\theta_p - \theta_r)= <\hat{r}, \hat{p}> \notag\end{align}
\begin{align}    (\Delta s)^{2} = \left(\frac{v}{c} \right)^{2} \frac{\hbar t}{m} \notag\end{align}

This conclusion is a new insight to special relativity in that variance of the space-time location is minimized in the time dimension in a particular frame of reference.

03.

Our Solar System.

\begin{align}\overrightarrow{R_{E}} = R_{E} \cos (-2\pi f_{\text{year}} t + \varphi ) \hat{x} + R_{E} \cos (-2\pi f_{\text{year}} t + \varphi ) \hat{y} \notag\end{align}
\begin{align}\overrightarrow{R_{e}} = R_{e} \cos (-2\pi f_{\text{SR}} t + \vartheta ) \hat{x} + R_{e} \cos (-2\pi f_{\text{SR}} t + \vartheta ) \hat{y} \notag\end{align}
\begin{align}\overrightarrow{R_{y}} = v_{z \perp} t \hat{y} \notag\end{align}
\begin{align}\overrightarrow{R_{\text{Laboratory}}} = \overrightarrow{R_{E}} + \overrightarrow{R_{e}} + \overrightarrow{R_{y}} \notag\end{align}
\begin{align}|v_{e}| = 2 \pi f_{\text{SR}} \cdot R_{E} \notag\end{align}
\begin{align}    (\Delta s)^{2} = \frac{2\hbar t}{m c^{2}} v_{z \perp} v_{e} \cos(2 \pi f_{SR} t - \vartheta) \notag\end{align}
Which is consistent with our data.
\begin{align}\cos (\theta_{p} - \theta_r ) = \cos \left ( 2 \pi (f_{\text{SR}} - f_{\text{year}} )t + \varphi - \vartheta - \frac{\pi}{2} \right )\notag\\ = \cos \left ( 2 \pi f_{\text{day}} t + \varphi - \vartheta - \frac{\pi}{2} \right ) \notag\end{align}
Download Papers
Download Papers
Download Papers
Download Papers
Cookie consent
Cookies are used on this site to improve site navigation and provide the greatest user experience. By clicking ”Accept“, you consent to the use of the Cookies